Amps to KVA Calculator
619
Single Phase
Three Phase
Calculation Results (Single Phase)
Enter values and click calculate
Calculation Results (Three Phase)
Enter values and click calculate
Calculation Steps
Enter values and click calculate to see steps
How This Calculator Works
This calculator converts current (Amps) to apparent power (KVA) for both single-phase and three-phase electrical systems.
Key Concepts:
- Current (Amps): The flow of electric charge through a conductor
- Apparent Power (KVA): The product of voltage and current
- Voltage (V): The electrical potential difference
Formulas Used:
Single Phase:
$$ S_{(\mathrm{kVA})} = \frac{I \times V}{1000} $$ Where:
S = Apparent Power in kVA
I = Current in Amps
V = Voltage in Volts
$$ S_{(\mathrm{kVA})} = \frac{I \times V}{1000} $$ Where:
S = Apparent Power in kVA
I = Current in Amps
V = Voltage in Volts
Three Phase:
$$ S_{(\mathrm{kVA})} = \frac{I \times V \times \sqrt{3}}{1000} $$ $${Where \sqrt{3}≈ 1.732}$$
$$ S_{(\mathrm{kVA})} = \frac{I \times V \times \sqrt{3}}{1000} $$ $${Where \sqrt{3}≈ 1.732}$$
Example Calculation
Single Phase Example:
Given: 20 Amps at 230V
$$ S = \frac{20 \times 230}{1000} $$ $$ S = \frac{4600}{1000} $$ $$ S = 4.6 \text{ kVA} $$
$$ S = \frac{20 \times 230}{1000} $$ $$ S = \frac{4600}{1000} $$ $$ S = 4.6 \text{ kVA} $$
Three Phase Example:
Given: 30 Amps at 400V
$$ S = \frac{30 \times 400 \times \sqrt{3}}{1000} $$ $$ S = \frac{30 \times 400 \times 1.732}{1000} $$ $$ S = 20.78 \text{ kVA} $$
$$ S = \frac{30 \times 400 \times \sqrt{3}}{1000} $$ $$ S = \frac{30 \times 400 \times 1.732}{1000} $$ $$ S = 20.78 \text{ kVA} $$